The career scold Q in m^3/s in an known muniment of round cross-section shown in the symbol beneath is ardent by Q = 2^3/2 D^5/2_c squareroot g (theta – 0.5 evil (2 theta))^3/2/8 squareroot evil theta (1 – cos theta)^5/2 where g = 9.8 m/s^2 is the gravitational regular and D_c is ardent by D_c = d/2 (1 – cos theta) Note that the units coercion theta in these equations is radians. Create at smallest individual duty touch coercion this equation, which has couple input, transversion d and predilection theta. Use the duty touchs to abuse career scold Q, and stereotype the board shown overhead. Note that in the board, theta is in degrees.
g = 9.8;
% Calculating coercion d = 2
D = @(d, theta) (d / 2)*(1 – cos(theta));
coercion i = 1:numel(angle)
Dc1(i) = feval(D, 2, deg2rad(angle(i)));
end
% Calculating Q1 coercion d = 2
coercion i = 1:numel(Dc1)
Q1(i) = (2^(3/2)*Dc1(i)^(5/2)*sqrt(g).*(deg2rad(angle(i)) …
– 0.5.*sin(2*deg2rad(angle(i)))).^(3/2) ) / …
( 8*sqrt(sin(deg2rad(angle(i)))).*((1 – cos(deg2rad(angle(i)))).^(5 / 2)) );
end
% Calculating coercion d = 4
coercion i = 1:numel(angle)
Dc2(i) = feval(D, 4, deg2rad(angle(i)));
end
% Calculating Q2 coercion d = 4
coercion i = 1:numel(Dc2)
Q2(i) = (2^(3/2)*Dc2(i)^(5/2)*sqrt(g).*(deg2rad(angle(i)) …
– 0.5.*sin(2*deg2rad(angle(i)))).^(3/2) ) / …
( 8*sqrt(sin(deg2rad(angle(i)))).*((1 – cos(deg2rad(angle(i)))).^(5 / 2)) );
end
fprintf(‘tttransversion 2mtttransversion 4mn’);
fprintf(‘thetatQ m/stttQ m/snn’);
coercion j = 1:numel(Q1)
fprintf(‘%dtt%.4fttt%.4fn’, predilection(j), Q1(j), Q2(j));
end
OUTPUT