![TABLE A. 1 SI units (101 kPa (abs)] Kinematic Viscosity Dynamic Specific Weight Density (kg/m3) 1000 1000 1000 1000 Viscosity (Pa s) 1.75 × 10-3 1.52 × 10-3 Temperature (kN/m3) 1.75× 10-6 1.52 × 10-6 1.30 × 10-6 1.15 × 1 1.02 × 10-6 8.94 × 10-7 8.03 × 10-7 7.22 × 10-7 6.56 × 10-7 6.00 × 10-7 5.48 × 10-7 5.05 × 10-7 4.67× 10-7 4.39 × 10-7 0 9.81 9.81 9.81 9.81 9.79 9.78 9.77 9.75 5 1.30 × 10-3 1.15 × 10-3 15 20 25 30 0-6 ×10-3 8.91 × 10-4 8.00 × 10-4 718 × 10-4 6.51 × 10-4 5.94 × 10-4 5.41 × 10-4 4.98 × 10-4 4.60 x 10-4 4.31 × 10-4 997 996 35 40 9.73 45 990 988 986 984 981 50 60 65 70 75 80 9.69 9.67 9.65 9.62 9.59 9.56 9.53 978 02 0 411 x 107 975 3.73 × 10-4 3.50×10-4 3.30 × 10-4 3.11 × 10-4 2.92 × 10-4 2.82 × 10-4 3.83 × 10-7 3.60×10 3.41 × 10-7 3.22 × 10 3.04 × 10-7 2.94 × 10-7 85 9.50 968 965 962 958 90 9.47 9.44 100](https://d2vlcm61l7u1fs.cloudfront.net/media%2F4db%2F4dbea56c-8d9f-42fc-9b77-7b44648a2842%2Fphp4CG75H.png)
1. Write a administrative program in MATLAB that calculates the keep-aparticular heaviness of infiltrate control a attached sky using the basis from Appendix A. Such a program could be keep-akeep-apart of a more wide program to be written cethcoming. The cethcoming options could be reasond.
a. Enter the consultation basis control keep-aparticular heaviness as a duty of sky into an accoutre. Then control a fixed sky inquiry control the accoutre control the similar keep-aparticular heaviness. Interpolate sky betwixt estimates attached in the consultation.
b. Include basis in twain SI units and US usual System units.
c. Include dullness
d. Include checks in the program to fix that the fixed sky is among the ramble attached in the consultations (i.e. aloft the freezing object and beneath the paroxysm object).
e. Instead of using the consultation look-up avenue, reason a curve-fit technique to conquer the equations of the properties of infiltrate vs. sky. Then calculate the desired estimate control any fixed sky.
TABLE A. 1 SI units (101 kPa (abs)] Kinematic Viscosity Dynamic Keep-aparticular Heaviness Dullness (kg/m3) 1000 1000 1000 1000 Viscosity (Pa s) 1.75 × 10-3 1.52 × 10-3 Sky (kN/m3) 1.75× 10-6 1.52 × 10-6 1.30 × 10-6 1.15 × 1 1.02 × 10-6 8.94 × 10-7 8.03 × 10-7 7.22 × 10-7 6.56 × 10-7 6.00 × 10-7 5.48 × 10-7 5.05 × 10-7 4.67× 10-7 4.39 × 10-7 0 9.81 9.81 9.81 9.81 9.79 9.78 9.77 9.75 5 1.30 × 10-3 1.15 × 10-3 15 20 25 30 0-6 ×10-3 8.91 × 10-4 8.00 × 10-4 718 × 10-4 6.51 × 10-4 5.94 × 10-4 5.41 × 10-4 4.98 × 10-4 4.60 x 10-4 4.31 × 10-4 997 996 35 40 9.73 45 990 988 986 984 981 50 60 65 70 75 80 9.69 9.67 9.65 9.62 9.59 9.56 9.53 978 02 0 411 x 107 975 3.73 × 10-4 3.50×10-4 3.30 × 10-4 3.11 × 10-4 2.92 × 10-4 2.82 × 10-4 3.83 × 10-7 3.60×10 3.41 × 10-7 3.22 × 10 3.04 × 10-7 2.94 × 10-7 85 9.50 968 965 962 958 90 9.47 9.44 100
Code:
%Define sky
temp = 0:5:100;
%Define keep-aparticular heaviness consultation
sp_wt = [9.81 9.81 9.81 9.81 9.79 9.78 9.77 9.75 9.73 9.71 9.69 9.67 9.65 9.62 9.59 9.56 9.53 9.50 9.47 9.44 9.40];
%Define dullness consultation
dullness = [1000 1000 1000 1000 998 997 996 994 992 990 988 986 984 981 978 975 971 968 965 962 968];
%Enter sky
x = input(‘Enter temp: ‘);
%Calculate renunciation
renunciation = ceil(x/5);
%Calculate heaviness
y_sp_wt = sp_wt(index) + (sp_wt(renunciation + 1) – sp_wt(index)) / (renunciation * abs(5 – x)) ;
%Calculate dullness
y_dullness = dullness(index) + (density(renunciation + 1) – dullness(index)) / (renunciation * abs(5 – x)) ;
%Display result
fprintf(‘sp-wt = %d KiloNewton per strong meterndullness = %d kg per strong metern’, y_sp_wt, y_density)