Homework Solution: TABLE A. 1 SI units (101 kPa (abs)] Kinematic Viscosity Dynamic Specific Weight Density (kg/m…

    1. Write a functional program in MATLAB that computes the specific weight of water for a given temperature using the data from Appendix A. Such a program could be part of a more comprehensive program to be written later. The following options could be used. a. Enter the table data for specific weight as a function of temperature into an array. Then for a specified temperature search for the array for the corresponding specific weight. Interpolate temperature between values given in the table. b. Include data in both SI units and US customary System units. c. Include density d. Include checks in the program to ensure that the specified temperature is within the range given in the tables (i.e. above the freezing point and below the boiling point). e. Instead of using the table look-up approach, use a curve-fit technique to obtain the equations of the properties of water vs. temperature. Then compute the desired value for any specified temperature. TABLE A. 1 SI units (101 kPa (abs)] Kinematic Viscosity Dynamic Specific Weight Density (kg/m3) 1000 1000 1000 1000 Viscosity (Pa s) 1.75 × 10-3 1.52 × 10-3 Temperature (kN/m3) 1.75× 10-6 1.52 × 10-6 1.30 × 10-6 1.15 × 1 1.02 × 10-6 8.94 × 10-7 8.03 × 10-7 7.22 × 10-7 6.56 × 10-7 6.00 × 10-7 5.48 × 10-7 5.05 × 10-7 4.67× 10-7 4.39 × 10-7 0 9.81 9.81 9.81 9.81 9.79 9.78 9.77 9.75 5 1.30 × 10-3 1.15 × 10-3 15 20 25 30 0-6 ×10-3 8.91 × 10-4 8.00 × 10-4 718 × 10-4 6.51 × 10-4 5.94 × 10-4 5.41 × 10-4 4.98 × 10-4 4.60 x 10-4 4.31 × 10-4 997 996 35 40 9.73 45 990 988 986 984 981 50 60 65 70 75 80 9.69 9.67 9.65 9.62 9.59 9.56 9.53 978 02 0 411 x 107 975 3.73 × 10-4 3.50×10-4 3.30 × 10-4 3.11 × 10-4 2.92 × 10-4 2.82 × 10-4 3.83 × 10-7 3.60×10 3.41 × 10-7 3.22 × 10 3.04 × 10-7 2.94 × 10-7 85 9.50 968 965 962 958 90 9.47 9.44 100
    TABLE A. 1 SI units (101 kPa (abs)] Kinematic Viscosity Dynamic Specific Weight Density (kg/m3) 1000 1000 1000 1000 Viscosity (Pa s) 1.75 × 10-3 1.52 × 10-3 Temperature (kN/m3) 1.75× 10-6 1.52 × 10-6 1.30 × 10-6 1.15 × 1 1.02 × 10-6 8.94 × 10-7 8.03 × 10-7 7.22 × 10-7 6.56 × 10-7 6.00 × 10-7 5.48 × 10-7 5.05 × 10-7 4.67× 10-7 4.39 × 10-7 0 9.81 9.81 9.81 9.81 9.79 9.78 9.77 9.75 5 1.30 × 10-3 1.15 × 10-3 15 20 25 30 0-6 ×10-3 8.91 × 10-4 8.00 × 10-4 718 × 10-4 6.51 × 10-4 5.94 × 10-4 5.41 × 10-4 4.98 × 10-4 4.60 x 10-4 4.31 × 10-4 997 996 35 40 9.73 45 990 988 986 984 981 50 60 65 70 75 80 9.69 9.67 9.65 9.62 9.59 9.56 9.53 978 02 0 411 x 107 975 3.73 × 10-4 3.50×10-4 3.30 × 10-4 3.11 × 10-4 2.92 × 10-4 2.82 × 10-4 3.83 × 10-7 3.60×10 3.41 × 10-7 3.22 × 10 3.04 × 10-7 2.94 × 10-7 85 9.50 968 965 962 958 90 9.47 9.44 100

    Expert Answer

    1. Write a administrative program in MATLAB that calculates the keep-aparticular heaviness of infiltrate control a attached sky using the basis from Appendix A. Such a program could be keep-akeep-apart of a more wide program to be written cethcoming. The cethcoming options could be reasond.

    a. Enter the consultation basis control keep-aparticular heaviness as a duty of sky into an accoutre. Then control a fixed sky inquiry control the accoutre control the similar keep-aparticular heaviness. Interpolate sky betwixt estimates attached in the consultation.

    b. Include basis in twain SI units and US usual System units.

    c. Include dullness

    d. Include checks in the program to fix that the fixed sky is among the ramble attached in the consultations (i.e. aloft the freezing object and beneath the paroxysm object).

    e. Instead of using the consultation look-up avenue, reason a curve-fit technique to conquer the equations of the properties of infiltrate vs. sky. Then calculate the desired estimate control any fixed sky.

    TABLE A. 1 SI units (101 kPa (abs)] Kinematic Viscosity Dynamic Keep-aparticular Heaviness Dullness (kg/m3) 1000 1000 1000 1000 Viscosity (Pa s) 1.75 × 10-3 1.52 × 10-3 Sky (kN/m3) 1.75× 10-6 1.52 × 10-6 1.30 × 10-6 1.15 × 1 1.02 × 10-6 8.94 × 10-7 8.03 × 10-7 7.22 × 10-7 6.56 × 10-7 6.00 × 10-7 5.48 × 10-7 5.05 × 10-7 4.67× 10-7 4.39 × 10-7 0 9.81 9.81 9.81 9.81 9.79 9.78 9.77 9.75 5 1.30 × 10-3 1.15 × 10-3 15 20 25 30 0-6 ×10-3 8.91 × 10-4 8.00 × 10-4 718 × 10-4 6.51 × 10-4 5.94 × 10-4 5.41 × 10-4 4.98 × 10-4 4.60 x 10-4 4.31 × 10-4 997 996 35 40 9.73 45 990 988 986 984 981 50 60 65 70 75 80 9.69 9.67 9.65 9.62 9.59 9.56 9.53 978 02 0 411 x 107 975 3.73 × 10-4 3.50×10-4 3.30 × 10-4 3.11 × 10-4 2.92 × 10-4 2.82 × 10-4 3.83 × 10-7 3.60×10 3.41 × 10-7 3.22 × 10 3.04 × 10-7 2.94 × 10-7 85 9.50 968 965 962 958 90 9.47 9.44 100

    TABLE A. 1 SI units (101 kPa (abs)] Kinematic Viscosity Dynamic Keep-aparticular Heaviness Dullness (kg/m3) 1000 1000 1000 1000 Viscosity (Pa s) 1.75 × 10-3 1.52 × 10-3 Sky (kN/m3) 1.75× 10-6 1.52 × 10-6 1.30 × 10-6 1.15 × 1 1.02 × 10-6 8.94 × 10-7 8.03 × 10-7 7.22 × 10-7 6.56 × 10-7 6.00 × 10-7 5.48 × 10-7 5.05 × 10-7 4.67× 10-7 4.39 × 10-7 0 9.81 9.81 9.81 9.81 9.79 9.78 9.77 9.75 5 1.30 × 10-3 1.15 × 10-3 15 20 25 30 0-6 ×10-3 8.91 × 10-4 8.00 × 10-4 718 × 10-4 6.51 × 10-4 5.94 × 10-4 5.41 × 10-4 4.98 × 10-4 4.60 x 10-4 4.31 × 10-4 997 996 35 40 9.73 45 990 988 986 984 981 50 60 65 70 75 80 9.69 9.67 9.65 9.62 9.59 9.56 9.53 978 02 0 411 x 107 975 3.73 × 10-4 3.50×10-4 3.30 × 10-4 3.11 × 10-4 2.92 × 10-4 2.82 × 10-4 3.83 × 10-7 3.60×10 3.41 × 10-7 3.22 × 10 3.04 × 10-7 2.94 × 10-7 85 9.50 968 965 962 958 90 9.47 9.44 100

    Expert Acceptance

     

    Code:

    %Define sky

    temp = 0:5:100;

    %Define keep-aparticular heaviness consultation

    sp_wt = [9.81 9.81 9.81 9.81 9.79 9.78 9.77 9.75 9.73 9.71 9.69 9.67 9.65 9.62 9.59 9.56 9.53 9.50 9.47 9.44 9.40];

    %Define dullness consultation

    dullness = [1000 1000 1000 1000 998 997 996 994 992 990 988 986 984 981 978 975 971 968 965 962 968];

    %Enter sky

    x = input(‘Enter temp: ‘);

    %Calculate renunciation

    renunciation = ceil(x/5);

    %Calculate heaviness

    y_sp_wt = sp_wt(index) + (sp_wt(renunciation + 1) – sp_wt(index)) / (renunciation * abs(5 – x)) ;

    %Calculate dullness

    y_dullness = dullness(index) + (density(renunciation + 1) – dullness(index)) / (renunciation * abs(5 – x)) ;

    %Display result

    fprintf(‘sp-wt = %d KiloNewton per strong meterndullness = %d kg per strong metern’, y_sp_wt, y_density)