Homework Solution: L= input('what is the length of the bar');…

    clear all clc L= input('what is the length of the bar'); N= input('what is the number of intervals '); q0= input('what is this value'); E= 2.1e11; A= 0.02; h = L/N; k= 1000000; A_1= zeros(N); for c=2:N-1 A_1(c,c)=-2; A_1(c,c-1)=1; A_1(c,c+1)=1;   end A_1(N,N-1)=2; A_1(1,1)=-2;   A_1 (1,2)= 1; A_1(N,N)=-2-2*h*k/(A*E); A_1; x= h:h:L; for i= 1:N if x(i)<= L/2 q(i)= q0*((2*x(i))^2)/L^2; else q(i)=q0*(2-2*x(i)/L); end end A_1 q b= zeros(N,1); for i= 1:N b(i)= - ((h^2)*q(i)/(E*A)); end b U= A_1^-1*b For problem #2 is clc clear all E= 2.1e11; A= 0.02; L= 5; q0= 5000; G = [2 4 8 16 4096] for j= 1:5 N= G(j); k= 1000000; A_1= zeros(N); h = L/N; for c=2:N-1 A_1(c,c)=-2; A_1(c,c-1)=1; A_1(c,c+1)=1;   end A_1(N,N-1)=2; A_1(1,1)=-2;   A_1 (1,2)= 1; A_1(N,N)=-2-2*h*k/(A*E); A_1 x= h:h:L; for i= 1:N if x(i)<= L/2 q(i)= q0*(2*x(i))^2/L^2; else q(i)=q0*(2-2*x(i)/L); end end A_1 q b= zeros(N,1); for i= 1:N b(i)= - ((h^2)*q(i)/(E*A)); end b U= A_1b plot (x,U) hold on end So I just need help writing the code for #3 and #4.   media%2Fdc9%2Fdc9b447b-06ab-45d0-80f3-a8 media%2F0be%2F0be7da0a-7fd1-4c8c-ac57-26I need help with writing the code for #3 and 4. I already write the code for #1 and 2. The code for problem #1 is

    Expert Answer

    clear all

    clc

    L= input(‘what is the elongation of the bar’);

    N= input(‘what is the number of intervals ‘);

    q0= input(‘what is this value’);

    E= 2.1e11;

    A= 0.02;

    h = L/N;

    k= 1000000;

    A_1= zeros(N);

    coercion c=2:N-1

    A_1(c,c)=-2;

    A_1(c,c-1)=1;

    A_1(c,c+1)=1;

     

    end

    A_1(N,N-1)=2;

    A_1(1,1)=-2;

     

    A_1 (1,2)= 1;

    A_1(N,N)=-2-2*h*k/(A*E);

    A_1;

    x= h:h:L;

    coercion i= 1:N

    if x(i)<= L/2

    q(i)= q0*((2*x(i))^2)/L^2;

    else

    q(i)=q0*(2-2*x(i)/L);

    end

    end

    A_1

    q

    b= zeros(N,1);

    coercion i= 1:N

    b(i)= – ((h^2)*q(i)/(E*A));

    end

    b

    U= A_1^-1*b

    Coercion whole #2 is

    clc

    clear all

    E= 2.1e11;

    A= 0.02;

    L= 5;

    q0= 5000;

    G = [2 4 8 16 4096]

    coercion j= 1:5

    N= G(j);

    k= 1000000;

    A_1= zeros(N);

    h = L/N;

    coercion c=2:N-1

    A_1(c,c)=-2;

    A_1(c,c-1)=1;

    A_1(c,c+1)=1;

     

    end

    A_1(N,N-1)=2;

    A_1(1,1)=-2;

     

    A_1 (1,2)= 1;

    A_1(N,N)=-2-2*h*k/(A*E);

    A_1

    x= h:h:L;

    coercion i= 1:N

    if x(i)<= L/2

    q(i)= q0*(2*x(i))^2/L^2;

    else

    q(i)=q0*(2-2*x(i)/L);

    end

    end

    A_1

    q

    b= zeros(N,1);

    coercion i= 1:N

    b(i)= – ((h^2)*q(i)/(E*A));

    end

    b

    U= A_1b

    plot (x,U)

    hold on

    end

    So I regular deficiency acceleration communication the regulation coercion #3 and #4.

     

    media%2Fdc9%2Fdc9b447b-06ab-45d0-80f3-a8

    media%2F0be%2F0be7da0a-7fd1-4c8c-ac57-26I deficiency acceleration with communication the regulation coercion #3 and 4. I already transcribe the regulation coercion #1 and 2. The regulation coercion whole #1 is

    Expert Counter-argument