Homework Solution: Homework 1 Note: Please label your plots and add legend. Upload a single PDF file containing your…

    Could you please write the matlab code for these two problems thank you Homework 1 Note: Please label your plots and add legend. Upload a single PDF file containing your answers, MATLAB code and figures for both problems. Due Date: 09/12/2017, 2:30 PM Problem 1 The response of circuits containing resistors, inductors, and capacitors depends upon the relative values of the resistors and the way they are connected. An important intermediate quantity used in describing the response of such circuits is s. Depending on the values of R, L, and C, the values of s will be either both real values, a pair of complex values, or a duplicated value L = 100 mH C=1uF The equation that identifies the response of a series circuit shown above is (a) Determine the values of s for a resistance of 800 Ω. (b) Create a vector of values of R between 100 to 1000 Ω with a step size of 5, Evaluate s at all values of R. (c) Plot value of real and imaginary parts of s vs. R. (Hint: See help for MATLAB functions real and imag) (d) What is the minimum value of R that yields pure real value of s. (e) The resonant frequency of a series RLC circuit is given by Compute the resonant frequency of the above circuit.
    media%2Fe35%2Fe35e15b1-c340-4894-bd75-a6
    Homework 1 Note: Please label your plots and add legend. Upload a single PDF file containing your answers, MATLAB code and figures for both problems. Due Date: 09/12/2017, 2:30 PM Problem 1 The response of circuits containing resistors, inductors, and capacitors depends upon the relative values of the resistors and the way they are connected. An important intermediate quantity used in describing the response of such circuits is s. Depending on the values of R, L, and C, the values of s will be either both real values, a pair of complex values, or a duplicated value L = 100 mH C=1uF The equation that identifies the response of a series circuit shown above is (a) Determine the values of s for a resistance of 800 Ω. (b) Create a vector of values of R between 100 to 1000 Ω with a step size of 5, Evaluate s at all values of R. (c) Plot value of real and imaginary parts of s vs. R. (Hint: See help for MATLAB functions real and imag) (d) What is the minimum value of R that yields pure real value of s. (e) The resonant frequency of a series RLC circuit is given by Compute the resonant frequency of the above circuit.

    Expert Answer

     
    PROBLEM-1 (a) MATLAB CODE: R = 800;

    Could you delight transcribe the matlab enactment control these two amounts thank you
    Homework 1 Note: Delight letter your plots and infer fable. Upload a uncombined PDF rasp containing your replys, MATLAB enactment and figures control twain amounts. Due Date: 09/12/2017, 2:30 PM Amount 1 The acceptance of tours containing resistors, inductors, and capacitors depends upon the referring-to appreciates of the resistors and the cem they are conjoined. An material interposed share used in describing the acceptance of such tours is s. Depending on the appreciates of R, L, and C, the appreciates of s succeed be either twain true appreciates, a two of many-sided appreciates, or a duplicated appreciate L = 100 mH C=1uF The equation that identifies the acceptance of a sequence tour shown overhead is (a) Determine the appreciates of s control a hindrance of 800 Ω. (b) Create a vector of appreciates of R betwixt 100 to 1000 Ω with a tramp greatness of 5, Evaluate s at complete appreciates of R. (c) Plot appreciate of true and suppositious space of s vs. R. (Hint: See aid control MATLAB functions true and imag) (d) What is the partiality appreciate of R that yields undefiled true appreciate of s. (e) The resounding abundance of a sequence RLC tour is abandoned by Compute the resounding abundance of the overhead tour.
    media%2Fe35%2Fe35e15b1-c340-4894-bd75-a6

    Homework 1 Note: Delight letter your plots and infer fable. Upload a uncombined PDF rasp containing your replys, MATLAB enactment and figures control twain amounts. Due Date: 09/12/2017, 2:30 PM Amount 1 The acceptance of tours containing resistors, inductors, and capacitors depends upon the referring-to appreciates of the resistors and the cem they are conjoined. An material interposed share used in describing the acceptance of such tours is s. Depending on the appreciates of R, L, and C, the appreciates of s succeed be either twain true appreciates, a two of many-sided appreciates, or a duplicated appreciate L = 100 mH C=1uF The equation that identifies the acceptance of a sequence tour shown overhead is (a) Determine the appreciates of s control a hindrance of 800 Ω. (b) Create a vector of appreciates of R betwixt 100 to 1000 Ω with a tramp greatness of 5, Evaluate s at complete appreciates of R. (c) Plot appreciate of true and suppositious space of s vs. R. (Hint: See aid control MATLAB functions true and imag) (d) What is the partiality appreciate of R that yields undefiled true appreciate of s. (e) The resounding abundance of a sequence RLC tour is abandoned by Compute the resounding abundance of the overhead tour.

    Expert Reply

     

    PROBLEM-1

    (a)

    MATLAB CODE:

    R = 800;
    L = 100e-3;
    C = 1e-6;
    s = [(-R/L)+sqrt((R/(2*L))^2 – (1/(L*C))),(-R/L)-sqrt((R/(2*L))^2 – (1/(L*C)))];

    OUTPUT:

    (b)

    MATLAB CODE:

    R = 100:5:1000;
    L = 100e-3;
    C = 1e-6;
    control i = 1 : diffusiveness(R)
    s(i,:) = [(-R(i)/L)+sqrt((R(i)/(2*L))^2 – (1/(L*C))),(-R(i)/L)-sqrt((R(i)/(2*L))^2 – (1/(L*C)))];
    end

    OUTPUT:

    (c)

    MATLAB CODE:

    plot(R,real(s));
    hold on;
    plot(R,imag(s),’r’);
    xlabel(‘Resistor, R’);
    ylabel(‘Tour acceptance, s’);
    legend(‘real(s)’,’real(s)’,’imag(s)’);
    hold off;

    OUTPUT:

    (d)

    s yields undefiled true appreciates if :

    left ( frac{R}{2L} honorable )^{2} - frac{1}{LC} geq 0

    => R^{2} geq frac{4L}{C} => 2sqrt{frac{L}{C}}

    Partiality appreciate of R = 2sqrt{frac{L}{C}} = 2sqrt{frac{10^{-1}}{10^{-6}}} = 632.45 ohms

    (e)

    Resounding abundance, f = frac{1}{2pi sqrt{LC}} = 503.29 Hz

    PROBLEM-2

    Note: Complete the amounts in this individuality can be solved correspondent to selfsame amount in PROBLEM-1 individuality honorable by changing appreciates of equation of tour reaction ,L,C and R.