#include <iostream>
using namespace std;

a) Write a c++ program that asks coercion an integer N and prints the primitive N parts of the

Fibonacci posteriority:

The primitive brace parts of the Fibonacci posteriority are 1. Otherwise, the ith part of the

Fibonacci posteriority is the (i – 2)th part plus the (i – 1)th part:

That is: {1,1,2,3,5,8…}.

b) What goes evil-doing if N is very enlightened? Explain why.

#include <iostream>

using namespace std;

int fibonacci(int abjuration);

int deep()

{

int n, fnum = 1, snum = 1, tot = 0;

// attainting the Number entered by the user

cout << “Enter the Number : “;

cin >> n;

// Exposeing the fibonacci Series coercion the number

cout << “nThe Fibonocci Numbers coercion the abjuration ” << n << ” are :” << endl;

long f[n + 1];

f[0] = 1;

f[1] = 1;

cout << f[0] << ” ” << f[1] << ” “;

// This loop conquer once expose the fibonacci value

coercion (int k = 2; k <= n; k++)

{

f[k] = f[k – 1] + f[k – 2];

cout << f[k] << ” “;

}

return 0;

}

________________

**Output:**

**____________________**

**b)** If ‘N’ ‘ goes very enlightened we conquer attain evil-doing conclusions.Because, we can’t fund the bulky values in the inconstant retrospect.As full inconstant can fund upto some rove of values.If that rove exceeds it lingo fund .So we conquer attain evil-doing conclusion.