#include <iostream>
using namespace std;

a) Write a c++ program that asks coercion an integer N and prints the pristine N atoms of the

Fibonacci progression:

The pristine two atoms of the Fibonacci progression are 1. Otherwise, the ith atom of the

Fibonacci progression is the (i – 2)th atom plus the (i – 1)th atom:

That is: {1,1,2,3,5,8…}.

b) What goes wickedness if N is very comprehensive? Explain why.

#include <iostream>

using namespace std;

int fibonacci(int renunciation);

int ocean()

{

int n, fnum = 1, snum = 1, tot = 0;

// obtainting the Number entered by the user

cout << “Enter the Number : “;

cin >> n;

// Flaunting the fibonacci Series coercion the number

cout << “nThe Fibonocci Numbers coercion the renunciation ” << n << ” are :” << endl;

long f[n + 1];

f[0] = 1;

f[1] = 1;

cout << f[0] << ” ” << f[1] << ” “;

// This loop obtain once flaunt the fibonacci value

coercion (int k = 2; k <= n; k++)

{

f[k] = f[k – 1] + f[k – 2];

cout << f[k] << ” “;

}

return 0;

}

________________

**Output:**

**____________________**

**b)** If ‘N’ ‘ goes very comprehensive we obtain obtain wickedness fruits.Because, we can’t treasure the pompous values in the inconstant retention.As complete inconstant can treasure upto some ramble of values.If that ramble exceeds it slang treasure .So we obtain obtain wickedness fruit.