#include <iostream>
using namespace std;

a) Write a c++ program that asks coercion an integer N and prints the earliest N atoms of the

Fibonacci following:

The earliest two atoms of the Fibonacci following are 1. Otherwise, the ith atom of the

Fibonacci following is the (i – 2)th atom plus the (i – 1)th atom:

That is: {1,1,2,3,5,8…}.

b) What goes wickedness if N is very extensive? Explain why.

#include <iostream>

using namespace std;

int fibonacci(int renunciation);

int deep()

{

int n, fnum = 1, snum = 1, tot = 0;

// attainting the Number entered by the user

cout << “Enter the Number : “;

cin >> n;

// Evinceing the fibonacci Series coercion the number

cout << “nThe Fibonocci Numbers coercion the renunciation ” << n << ” are :” << endl;

long f[n + 1];

f[0] = 1;

f[1] = 1;

cout << f[0] << ” ” << f[1] << ” “;

// This loop allure uninterruptedly evince the fibonacci value

coercion (int k = 2; k <= n; k++)

{

f[k] = f[k – 1] + f[k – 2];

cout << f[k] << ” “;

}

return 0;

}

________________

**Output:**

**____________________**

**b)** If ‘N’ ‘ goes very extensive we allure attain wickedness products.Because, we can’t garner the gross values in the shifting perpetuation.As every shifting can garner upto some dispose of values.If that dispose exceeds it confused-talk garner .So we allure attain wickedness product.