Can someone help with number 8?

For each assertion in 7(a)-(c), prove the assertion directly from the definition of the big-O asymptotic notation if it is true by finding values for the constants c and n_0. On the other hand, if the assertion is false, give a counter-example. Then answer the question in 7(d). F denotes the set of all functions from Z^+ to R^+. (a) Let f(n): Z^+ rightarrow R^+. A relation on a set is reflexive if each element is related to itself. The relation "is big-O of" is reflexive over F, In other words, f(n) elementof O(f(n)). (b) Let f(n): Z^+ rightarrow R^+ and g(n): Z^+ rightarrow R^+. A relation on a set is antisymmetric if whenever an element X is related to an element Y and Y is related X, then X = Y. The relation "is big-O of" is antisymmetric over F. In other words, if f(n) elementof O(g(n)) and g(n) elementof O(f(n)), then f(n) = g(n). (c) Let e(n): Z^+ rightarrow R^+, f(n): Z^+ rightarrow R^+ and g(n): Z^+ rightarrow R^+. A relation on a set is transitive if whenever an element X is related to Y and Y is related Z, then X is related to Z. The relation "is big-O of" is transitive over F. In other words, if e(n) elementof O(f(n)) and f(n) elementof O(g(n)), then e(n) elementof O(g(n)). (d) Is "is big-O of" a partial order on F? A relation is a partial order on a set if it is reflexive, antisymmetric and transitive. Given an infinite series s = sigma^infinity_n = 1 f(n), where f(n) is a continuous positive monotonically decreasing function that converges and n elementof Z^+, s can be bounded, using improper integrals, as follows: sigma^k_n = 1 f(n) + integral^infinity_k + 1 f(n) dn lessthanorequalto s lessthanorequalto sigma^k_n = 1 f(n) + integral^infinity_k f(n) dn, k elementof Z^+ Using the inequality in (1) and k = 5, prove that sigma^infinity_n = 1 1/n^3 elementof theta (1).
converges to a con

Can someone succor with compute 8?

Ce each assumption in 7(a)-(c), examine the assumption straightway from the limitation of the big-O asymptotic notation if it is gentleman by opinion values ce the firms c and n_0. On the other laborer, if the assumption is fabrication, surrender a counter-example. Then acceptance the topic in 7(d). F denotes the be of complete operations from Z^+ to R^+. (a) Suffer f(n): Z^+ rightarrow R^+. A association on a be is interchangeable if each atom is completeied to itself. The association “is big-O of” is interchangeable aggravate F, In other expression, f(n) atomof O(f(n)). (b) Suffer f(n): Z^+ rightarrow R^+ and g(n): Z^+ rightarrow R^+. A association on a be is antisymmetric if whenever an atom X is completeied to an atom Y and Y is completeied X, then X = Y. The association “is big-O of” is antisymmetric aggravate F. In other expression, if f(n) atomof O(g(n)) and g(n) atomof O(f(n)), then f(n) = g(n). (c) Suffer e(n): Z^+ rightarrow R^+, f(n): Z^+ rightarrow R^+ and g(n): Z^+ rightarrow R^+. A association on a be is phenomenal if whenever an atom X is completeied to Y and Y is completeied Z, then X is completeied to Z. The association “is big-O of” is phenomenal aggravate F. In other expression, if e(n) atomof O(f(n)) and f(n) atomof O(g(n)), then e(n) atomof O(g(n)). (d) Is “is big-O of” a local direct on F? A association is a local direct on a be if it is interchangeable, antisymmetric and phenomenal. Surrendern an infinite rotation s = sigma^infinity_n = 1 f(n), where f(n) is a consistent absolute monotonically decreasing operation that converges and n atomof Z^+, s can be restricted, using inexpedient completes, as follows: sigma^k_n = 1 f(n) + complete^infinity_k + 1 f(n) dn lessthanorequalto s lessthanorequalto sigma^k_n = 1 f(n) + complete^infinity_k f(n) dn, k atomof Z^+ Using the disparity in (1) and k = 5, examine that sigma^infinity_n = 1 1/n^3 atomof theta (1).

converges to a firm is complete of this and then we can fitting dispose values and obtain earn a firm ce it, suffer this ocnstant be k

So

so

s = firm =